substituted amino, carbamyl, aryloxy, heteroaryloxy, heteroaryl, and optionally substituted N-heterocyclyl;

R₃₁ is aryl, substituted aryl, aralkyl, heteroaralkyl, substituted aralkyl, or substituted heteroaralkyl;

R₃₂ is hydrogen; and/or

n is 1.

16. A method according to claim 1, having one or more of the following:

 R_1 is optionally substituted phenyl- C_1 - C_4 -alkyl-, optionally substituted heteroaryl- C_1 - C_4 -alkyl-, or naphthale-nylmethyl-;

R2 is hydrogen;

 R_2 is optionally substituted C_1 - C_4 alkyl-;

R₄ and R₅ are independently chosen from hydrogen, hydroxyl, halo, optionally substituted lower alkyl, optionally substituted lower alkoxy, cyano optionally substituted amino, carbamyl, aryloxy, heteroaryloxy, heteroaryl, and optionally substituted N-heterocyclyl;

$$R_3$$
 is $-S(O)_2 - R_{7a}$;

R₆ is R₁₂-alkylene-;

R₁₂ is chosen from alkoxy, amino, alkylamino, dialkylamino, carboxy, hydroxyl-, and N-heterocyclyl-; and/or

 R_{7a} is chosen from C_1 - C_{13} alkyl-; phenyl-; naphthyl-; phenyl substituted with cyano, halo, lower-alkyl-, lower-alkoxy, nitro, methylenedioxy, or trifluoromethyl-; biphenylyl and heteroaryl-.

17. A method according to claim 16, having one or more of the following:

 R_1 is naphthyl-, phenyl-, bromophenyl-, chlorophenyl-, methoxyphenyl-, ethoxyphenyl-, tolyl-, dimethylphenyl-, chorofluorophenyl-, methylchlorophenyl-, ethylphenyl-, phenethyl-, benzyl-, chlorobenzyl-, methylbenzyl-, methoxybenzyl-, cyanobenzyl-, hydroxybenzyl-, dichlorobenzyl-, dimethoxybenzyl-, or naphthalenylmethyl-;

 R_2 is hydrogen and R_2 is ethyl or propyl;

R₄ is hydrogen, halo, optionally substituted lower alkyl, optionally substituted lower alkoxy, cyano, substituted amino, carbamyl, aryloxy, heteroaryloxy, heteroaryl, or optionally substituted N-heterocyclyl;

R₅ is hydrogen, lower alkyl, or halo; and/or

 R_{7a} is chosen from phenyl substituted with halo, lower-alkyl-, lower-alkoxy, cyano, nitro, methlenedixoy, or trifluoromethyl-; and naphthyl-.

18. A method according to claim 1 wherein

X is absent;

Y is absent;

R₁ is optionally substituted aryl-C₁-C₄-alkyl-, optionally substituted heteroaryl-C₁-C₄-alkyl-, or naphthalenylmethyl:

 R_2 is optionally substituted C_1 - C_4 -alkyl-;

R₂ is hydrogen;

 R_4 is methyl or phenyl;

R₅ is hydrogen or methyl;

and

 R_3 is chosen from hydrogen, optionally substituted alkyloptionally substituted aryloptionally substituted aralkyloptionally substituted heteroaryloptionally substituted heteroaralkyloptionally substituted heteroaralkyloptionally substituted hydrogen, optionally substituted alkyloptionally substituted aryloptionally substituted aryloptionally substituted aralkyloptionally substituted heteroaralkyloptionally substituted heteroaralkyloptionally substituted heteroaryloptionally substituted

or R_3 taken together with R_6 , and the nitrogen to which they are bound, form an optionally substituted 5- to 12-membered nitrogen-containing heterocycle, which optionally incorporates from one to two additional heteroatoms, selected from N, O, and S in the heterocycle ring.

19. A method according to claim 18, wherein

 R_3 is $--C(O)R_7$;

R₆ is chosen from hydrogen, optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaralkyl-, and optionally substituted heterocyclyl-and

 R_{7} is selected from hydrogen, optionally substituted alkyl-, optionally substituted aralkyl-, optionally substituted heteroaralkyl-, optionally substituted heteroaryl-, optionally substituted aryl-, $R_{8}O-$ and $R_{14}-$ NH—, wherein R_{8} is chosen from optionally substituted alkyl and optionally substituted aryl and R_{14} is chosen from hydrogen, optionally substituted alkyl and optionally substituted alkyl and optionally substituted aryl.

20. A method according to claim 1 wherein R_2 and R_2 are each attached to a stereogenic center having an R-configuration

21-58. (canceled)

* * * * *